
Belief Propagation for Optimal User Association in Wireless

Networks

Sarabjot Singh
Research Project

May 10, 2012

1 Introduction

In a wireless setting the effective rate delivered to a user is not only influenced by the spectral
efficiency of its link with the associated access point (AP) but also by the total number of
users associated with that particular AP (also called the load). Thus, any association based
on local greedy decisions by the user would tend to be suboptimal. For example, a greedy
association policy where each user connects to its strongest (in terms of spectral efficiency) AP
may result in all users connecting to the same AP driving down the effective rate of each user.
The optimization formulation for user association is hard due to its combinatorial nature. In
this report, we investigate low complexity belief propagation methods to achieve optimal user
association, which are a naturally attractive option due to already existent messaging protocols
in wireless networks.

1.1 Related Work

There has been limited work in the application of belief propagation (BP) algorithms in wireless
settings. BP was used in [1] to optimize the selection of MIMO beamforming vectors so as
to maximize system sum rate. In [2] belief propagation was used for inter-cell interference
coordination with the objective of maximizing a certain network utility. However, in all these
works the user associations with the APs was assumed to be fixed (given) and system was
optimized with respect to resource allocation. Analogy of the user association problem can
be drawn with the clustering problem considered in the literature [3] where the objective is to
cluster similar “looking” data points so as to minimize the mean squared error. However, the
clustering problem does not extend naturally to a network setting where the network utility
is also influenced by the number of users clustered to a data point. We plan to explore this
further in future investigations.

1.2 Contribution

In this report, we formulate the optimal user association as a network utility maximization
problem. The solution of the optimal user association is posed as the MAP estimate of suitably
constructed probability distribution. A max-product message passing algorithm is presented to
obtain the MAP estimate. Through numerical results, it is shown that the exact max product is
significantly better than greedy association and is close to optimal. However, message product
algorithm still suffers from high complexity. To counter this, we further propose an approximate
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Figure 1: Users i and k associated with AP1 under greedy association (a). User i associated
with AP2 and user k associated with AP3 under optimal association (b). Plus mark denotes a
user and a square box denotes an AP

low complexity BP algorithm which is shown to perform better than the greedy association in
scenarios with large number of users, which is typically the case in cellular wireless networks.

2 Problem Formulation

2.1 System Model

A typical wireless setting is shown in Fig. 1 where a set of users lying in the 2D plane want to
associate to one of the available APs, (AP1, AP2, AP3, say). Let Ntx denote the set of all the
APs and Nrx denote the set of all the users in the system. Each link between each user, i and
AP, j is associated with a Signal-to-Interference-plus-Noise-Ratio, SINRij . The set of all such
links is denoted by E. Further let Ek denote the set of all links that are incident on node k.
SINR of each link is assumed to be known at both the corresponding user and the AP.

Every AP ∈ Ntx is assumed to be having a fixed resource B. Note that the resource can be
interpreted as bandwidth or time frequency blocks for OFDMA systems. The spectral efficiency
of a user i associated with AP j is assumed to be given by the Shannon’s channel capacity
formula :

Si,j = log(1 + SINRi,j).

Assumption 1. We assume fair resource allocation by each AP in which each user gets equal
fraction of resources. This assumption is clearly valid for round robin resource allocation but
for scheduling techniques like proportional fair (PF) this is also shown to hold true in the
equilibrium state of PF [4].

Thus, if K users are connected to AP, j, the effective rate of user i associated with j is
given by

Ri,j =
B × Si,j
K

=
B log(1 + SINRi,j)

K
. (1)
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2.2 User association optimization problem

Let the variable xi,j be the indicator function of the event that user i is associated with AP j.

Assumption 2. It is assumed that a user can associate with at most and at least one AP.

Thus, under the above assumption the following identity is evident :∑
j∈Ntx

xi,j = 1∀i ∈ Nrx (2)

Thus, the user association problem can be formulated as,

max
∑
j∈Ntx

∑
i∈Nrx

xi,jU(Ri,j)

s.t
∑
j∈Ntx

xi,j = 1∀i ∈ Nrx;xi,j ∈ {0, 1}. (3)

where U(R) is some utility function of rate. For example, if U(R) = R , then (3) corresponds
to sum rate maximization and user association problem can be written as,

max
∑
j∈Ntx

∑
i∈Nrx

xi,jSi,jB∑
i∈Nrx

xi,j

s.t
∑
j∈Ntx

xi,j = 1∀i ∈ Nrx;xi,j ∈ {0, 1}. (4)

3 Belief propagation for optimal user association

3.1 Exact Max-Product

When a probability distribution can be expressed as a product of factors, each of which depends
only on a subset of variables, the Max-product form of belief propagation can be used to find
the most likely state, the MAP estimate, of the corresponding probability distribution. Max-
product operates by iteratively passing messages between variables and the factors that they
are part of. In order to apply max-product, we now formulate user association as a MAP
estimation problem, by constructing a suitable probability distribution. Hereafter, binary
variable xe associated with each edge e ∈ E is equivalent to xi,j . Consider the following
probability distribution:

p(x) ∝
∏

i∈Nrx

Ψi(xEi)
∏

j∈Ntx

Φj(xEj) (5)

which contains a factor

Ψi(xEi) = 11

(∑
e∈Ei

xe = 1

)
(6)

for each user i ∈ Nrx and a factor

Φj(xEj) = exp

u∑
e∈Ej

xeU(Re)

 (7)
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for each AP j ∈ Ntx where u is some constant. Thus, each variable signifying an edge is part of
exactly two factors, each corresponding to one of its end point. Looking at p it is clear that the
mode of the distribution maximizes the sum utility when the constraint of (3) imposed by the
indicator function is valid. The factor-graph version of the max-product algorithm [5] passes
messages between variables and the factors that contain them at each iteration. The output is
an estimate x̂ of the MAP of p. The max-product update equations for the p in (5) are given
in Algo. 1. Algo. 1 can be partly simplified by noting the factor to variable update equation

Algorithm 1 Max-Product for User Association

• INIT Set t=0 and initialize each message to 1

• ITER Iteratively compute new messages until convergence as follows:
Variable to Factor

mt+1
e→i(xe) = mt

j→e(xe) ∀e ≡ (i, j)

mt+1
e→j(xe) = mt

i→e(xe) ∀e ≡ (i, j)

Factor to Variable :

mt+1
i→e(xe) = max

xEi\e

Ψi(xEi)
∏

e′∈Ei\e

mt
e′→i(xe′)

 ∀ i ∈ Nrx

mt+1
j→e(xe) = max

xEj\e

Φj(xEj)
∏

e′∈Ej\e

mt
e′→j(xe′)

 ∀ j ∈ Ntx

At each time t compute beliefs,

bte(xe) = mt
i→e(xe)×mt

j→e(xe)

• ESTIM Each edge e has estimate

x̂te = 1 if bte(1) > bte(0)

x̂te = 0 if bte(0) > bte(1)

x̂te = xgreedy if bte(1) = bte(0)

where xgreedy is the solution of the greedy association.

and (6). The simplified steps are given in Algo. 2.

3.2 Gaussian approximation

However, even after the presented simplification the max-product algorithm presented suffers
from high complexity. Specifically, the ITER step in Algo. 1 still requires search over 2Nrx

states in each iteration. This search becomes prohibitive as Nrx grows. Thus, to simplify
the computational complexity we relook at the MAP estimation algorithm. Instead of using
max product algorithm we use the sum product algorithm for estimating marginals of the
distribution p. Using the standard large deviation result [6] that with u → ∞, p concentrates
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Algorithm 2 Simplification of ITER of Algorithm 1

Factor to Variable :

mt+1
i→e(xe) = max

xEi\e

Ψi(xEi)
∏

e′∈Ei\e

mt
e′→i(xe′)

 =
∏

e′∈Ei\e

mt
e′→i(0); if xe = 1

mt+1
i→e(xe) = max

xEi\e

Ψi(xEi)
∏

e′∈Ei\e

mt
e′→i(xe′)


=

∏
e′∈Ei\e

mt
e′→i(0) max

e′∈Ei\e

me′→i(1)

me′→i(0)
; if xe = 0

around its mode, we can estimate the marginals of p for large u and can recover a good estimate
for the maximization of (3). The corresponding sum product algorithm is given in Algo. 3.
The reformulation as Algo. 3 does not solve the computational complexity problem as (9) still

Algorithm 3 Sum-Product for User Association

• INIT Set t=0 and let pi→e(t, xe) be an uniform initial distribution on xe∀e ∈ E.

• ITER Iteratively compute new messages as follows:
Variable to Factor

pt+1
e→i(xe) =

1

Z
ptj→e(xe) ∀e ≡ (i, j)

pt+1
e→j(xe) =

1

Z
pti→e(xe) ∀e ≡ (i, j)

Factor to Variable :
pt+1
i→e(xe) = E [Ψi(xEi)|xe] ∀ i ∈ Nrx (8)

pt+1
j→e(xe) = E [Φj(xEj)|xe] ∀ j ∈ Ntx (9)

where the expectation is over independent xe ∼ pe→i in (8) and over independent xe ∼
pe→j in (9). At each time t compute beliefs as,

bte(xe) = pti→e(xe)× ptj→e(xe)

• ESTIM Same as Algo 1

requires sum over 2Nrx states. We take the following assumption to simplify the analysis.

Assumption 3. The sum of variables xc, c ∈ E for some set E with large |E| is assumed to
be a Gaussian random variable as,∑

c∈Ej

xc = Y ∼ N (µj , σ
2
j ), (10)

5



where µj =
∑

c∈Ej
pc→j(1) and σ2j =

∑
c∈Ej

pc→j(1)pc→j(0).

Using the above assumption the factor to variable update in (9) can simplified as below for
two utilities:

• U(R) = R

E [Φj(xEj)|xe] = E

[
exp

(
u
xe log(1 + SINRe) +

∑
c∈Ej/e

xc log(1 + SINRc)

xe +
∑

c∈Ej/e
xc

)
|xe

]
(11)

=

∫
exp

(
u
xe log(1 + SINRe) + yw̄(Ej/e)

y + xe

)
exp

(
−(y − µj(e))2

2σ2j (e)

)
dy,

(12)

where µj(e) =
∑

c∈Ej/e
pc→j(1) and σ2j (e) =

∑
c∈Ej/e

pc→j(1)pc→j(0) The following fur-
ther simplification is used:∑

c∈Ej/e

xc log(1 + SINRc) ≈ w̄(Ej/e)
∑

c∈Ej/e

xc = w̄(Ej/e)Y

with

w̄(Ej/e) =
1

|Ej | − 1

∑
c∈Ej/e

log(1 + SINRc).

• U(R) = log(R)

E [Φj(xEj)|xe] = E

exp

u
xe log

(
log(1 + SINRe)

xe +
∑

c∈Ej/e
xc

)
+
∑

c∈Ej/e

xc log

(
log(1 + SINRc)

xe +
∑

c∈Ej/e
xc

)
 |xe


(13)

=

∫
exp

(
u{xe log(log(1 + SINRe)) + yw̄(Ej/e)− xe log(y + xe)− y log(y + xe)} −

(y − µj(e))2

2σ2j (e)

)
dy,

(14)
where the following simplifying assumption is used∑

c∈Ej/e

xc log(log(1 + SINRc)) ≈ w̄(Ej/e)
∑

c∈Ej/e

xc = w̄(Ej/e)Y

with

w̄(Ej/e) =
1

|Ej | − 1

∑
c∈Ej/e

log(log(1 + SINRc)).

Thus, with the above presented simplifications the sum over 2Nrx states in (9) is converted to a
single integral. Table 1 compares the computational complexity of the two proposed algorithms.
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Table 1: Computational Complexity per Round of per AP or User

Method RX TX

Exact BP O(Ntx) O(2Nrx)

Gaussian Approximation O(Ntx) O(Nrx)

3.3 Implementation of message passing in wireless networks

So far we have derived algorithms where the messages are passed between variables and factor
nodes where variables are the indicator functions of the each possible link in the network. This
formulation can not be directly implemented. However, the message passing algorithms can be
molded as follows to make them amenable for implementation :

• Variable to Factor: Each user calculates pt+1
e→i(xe) using the unicast message, ptj→e(xe),

from the corresonding AP in the last slot. Each AP calculates pt+1
e→j(xe) using the unicast

message, pti→e(xe), from the corresponding user in the last slot.

• Factor to Variable: Each user calculates pt+1
i→e(xe) using pte→i(xe) and transmits it to

the corresponding AP. Each AP calculates pt+1
j→e(xe) using pte→j(xe) and transmits it to

the corresponding user.

• After a certain number of rounds, each user can estimate the belief and associate with
the thus estimated AP.

4 Numerical Results

4.1 Exact BP

The performance of exact BP presented in Sec 3.1 is analyzed first in a simplistic setting. The
plots for the optimal association are generated through exhaustive search over (Ntx

Nrx) choices.
In the greedy association each user associates with the AP offering the best spectral efficiency.
For the performance comparison of these algorithms, we consider a network with Nrx = 5,
Ntx = 3. The simulation is done for 500 drops of the user and for each drop random spectral
efficiencies are generated as SINRi,j ∼ 5×exp(λj) where λj = 1; 2; 3 for j = 1; 2; 3 respectively.

First U(R) = R is considered and thus the objective is sum rate maximization across all
users. Fig. 2a shows the CDF of sum rate of the network and Fig. 2b shows the CDF of rate
across all users. As seen from the plots, the Algo. 1 is better than the greedy association and
is close to optimal for certain regimes. Since sum rate maximization tends to be unfair, it is
observed that in Fig. 2b optimal association tends to be worse for users receiving low rate
than the other algorithms. But this problem is alleviated if the objective function is changed
to U(R) = log(R) which brings in the fairness across users. Fig. 3b shows that optimal is
considerably better in improving the rate of worst users. Again, as can be observed from Fig.
3a and Fig. 3b exact BP (Algo. 1) is better than the greedy association.

4.2 Approximate belief propagation

As mentioned earlier optimal user association for large Nrx, which is typically the case in a
wireless setting, is highly computationally intensive. We thus compare the performance of
approximate belief propagation proposed in Sec. 3.2 with greedy association for Nrx = 100
and Ntx = 3. The simulation is done for 500 drops of the user and for each drop random
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Figure 2: Cumulative distribution function of the sum rate (a) across network and rate (b)
across 5 users with the sum rate maximization utility under different association algorithms.

spectral efficiencies are generated as SINRi,j ∼ 5 × exp(λj) where λj = 1; 0.2; 5 for j = 1; 2; 3
respectively.

For U(R) = R, Fig. 4a and 4b show the CDF of sum rate and rate across all users
respectively. As seen, approximate BP is still better than the greedy association in terms
of sum rate and rate in most of the regimes. However for very low rate users, approximate
BP tends to be a little worse than the greedy association. Again, this is due to the inherent
unfairness in the utility. This effect is ameliorated with U(R) = log(R) . The corresponding
CDF are shown in Fig. 5a and 5b where the objective of the optimization is sum log rate
maximization. Again as can be seen from the plots, the approximate BP outperforms the
greedy association. Note that the exact BP and optimal (exhaustive search) based association
results could not be furnished in these plots due to prohibitively large search space.

5 Conclusion

Two belief propagation algorithms : exact and approximate are proposed for optimal user asso-
ciation in wireless networks. The approximate BP is computationally less expensive compared
to exact BP and provides superior performance compared to greedy associations. The future
work should explore the connections between our work and the AMP framework [7] to obtain
performance bounds for the algorithms presented here. Future work should also further explore
the connections of the presented optimal user association problem to the affinity propagation
problem for data clustering [3].
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Figure 3: Cumulative distribution function of the sum rate (a) across network and rate (b)
across 5 users with the sum log rate maximization utility under different association algorithms
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Figure 4: Cumulative distribution function of the sum rate (a) across network and rate (b)
across 100 users with the sum rate maximization utility under different association algorithms
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